

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Latent Diffusion Models

Plan for Today

- Diffusion model math
- Training process (again)
- Motivation for latent diffusion
- Latent diffusion
- Conditional generation

Mathematics of Diffusion Models

Assume the forward and reverse process operate in T steps.

Both forward and reverse process are discrete so becomes a *Markov chain* with *Gaussian transition probability*.

 $\mathcal{N}(\mu, \sigma^2)$

Mathematics of Diffusion Models

Denote x_0 as a sample from a distribution $q(x_0)$.

Forward process: gaussian transition probability

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{(1-\beta_t)} x_{t-1}, \beta_t I)$$
 where $t \in \mathbb{N}$

and where β_t indicates trade-off between info to be kept from previous step and new noise added.

 $\mathcal{N}(\mu, \sigma^2)$

Mathematics of Diffusion Models

Denote x_0 as a sample from a distribution $q(x_0)$.

Forward process: gaussian transition probability

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{(1-\beta_t)} x_{t-1}, \beta_t I)$$
 where $t \in \mathbb{N}$

and where β_t indicates trade-off between info to be kept from previous step and new noise added.

We can equivalently write

$$x_t = \sqrt{(1 - \beta_t)} x_{t-1} + \sqrt{\beta_t} \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(0, I)$$

Discretized diffusion process

 $\mathcal{N}(\mu, \sigma^2)$

Mathematics of Diffusion Models

Through recurrence, we can represent any step in the chain as directly represented from x_0 :

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\overline{\alpha_t}} x_0, (1 - \bar{\alpha}_t)I)$$

where

$$\alpha_t = (1 - \beta_t)$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i = \prod_{i=1}^t (1 - \beta_i)$

and from the Markov property, the entire forward trajectory is

$$q(x_{0:T}) = q(x_0) \prod_{t=1}^{T} q(x_t | x_{t-1})$$

The reverse process

With the assumption on the drift and diffusion coefficients, the reverse of the diffusion process takes the same form.

Reverse gaussian transition probability

$$q(x_{t-1}|x_t)$$

can then be approximated by

$$p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

where μ_{θ} and Σ_{θ} are two functions parameterized by θ and learned.

The reverse process

Using the Markov property, the probability of a given backward trajectory can be approximated by

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$$

where $p(x_T)$ is an isotropic gaussian distribution that does not depend on θ

$$p(x_T) = \mathcal{N}(x_T; 0, I)$$

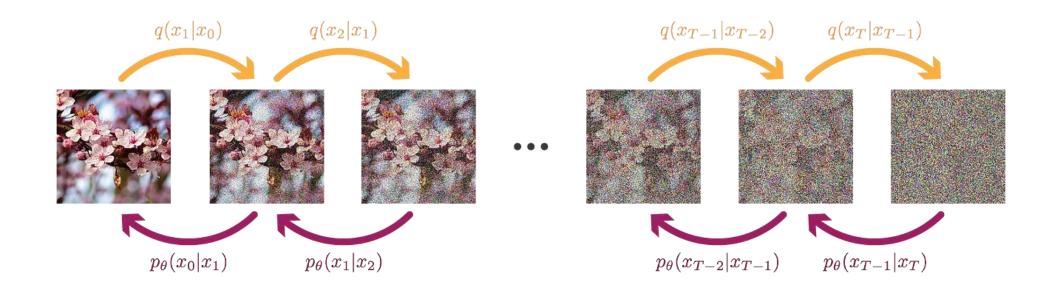
FIXED FORWARD PROCESS

Initial distribution

$$q(x_0)$$

Gaussian transition kernel

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$



Approximation of

$$q(x_{t-1}|x_t)$$

Gaussian transition kernel with parameters to be learned

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)) \qquad p(x_T) = \mathcal{N}(x_t; 0, I)$$

Initial distribution

$$p(x_T) = \mathcal{N}(x_t; 0, I)$$

LEARNED BACKWARD PROCESS

Questions

How do we learn the parameters θ for μ_{θ} and Σ_{θ} ?

What is the loss to be optimized?

• We hope that $p_{\theta}(x_0)$, the distribution of the last step of the reverse process, will be close to $q(x_0)$

Optimization Objective

$$\begin{split} \mu_{\theta}^*, \Sigma_{\theta}^* &= \arg\min_{\mu_{\theta}, \Sigma_{\theta}} \left(D_{KL}(q(x_0)||p_{\theta}(x_0)) \right) \\ &= \arg\min_{\mu_{\theta}, \Sigma_{\theta}} \left(-\int q(x_0) \log \left(\frac{p_{\theta}(x_0)}{q(x_0)} \right) dx_0 \right) \\ &= \arg\min_{\mu_{\theta}, \Sigma_{\theta}} \left(-\int q(x_0) \log(p_{\theta}(x_0)) dx_0 \right) \end{split}$$

Skipping a lot more math

- Expand p-theta as marginalization integral
- Use Jensen's inequality to define a slightly simpler upper bound to the loss
- Some manipulations with Bayes' Theorem
- Properties of KL divergence of two gaussian distributions
- An additional simplification suggested by [Ho et al 2020]

Diffusion models in practice

We have the forward process

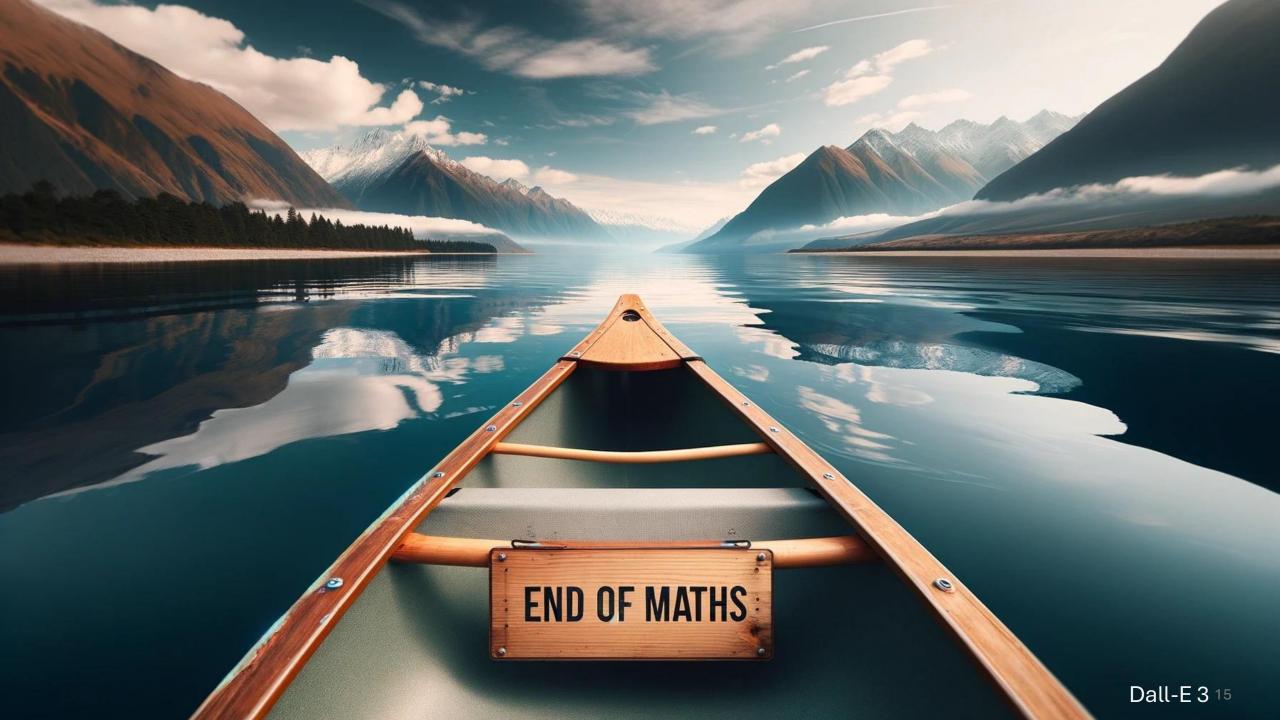
$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I) \qquad q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha_t}}x_0, (1-\bar{\alpha_t})I)$$

and our reverse process

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

and we want to train to minimize this simplified upper bound

$$\mathbb{E}_{x_0,t,\epsilon}\left(||\epsilon - \epsilon_{\theta}(x_t,t)||^2\right) = \mathbb{E}_{x_0,t,\epsilon}\left(||\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon,t)||^2\right)$$



Any Questions?

Moving on

- Diffusion model math
- Training process (again)
- Motivation for latent diffusion
- Latent diffusion
- Conditional generation

Training Process

Algorithm 1 Training

- 1: repeat
- 2: $x_0 \sim q(x_0)$
- 3: $t \sim \text{Uniform}(\{1, ..., T\})$
- 4: $\epsilon \sim \mathcal{N}(0, I)$
- 5: $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 \bar{\alpha}_t} \epsilon$
- 6: Take gradient descent step on $\nabla_{\theta} ||\epsilon \epsilon_{\theta}(x_t, t)||^2$

7: until converged

 $ightharpoonup Sample \ random \ initial \ data$ $ightharpoonup Sample \ random \ noise$ $ightharpoonup Rand. \ step \ of \ rand. \ trajectory$ ightharpoonup Optimisation

Iterate until convergence

Sample random step from random trajectory

Sample image

Sample noise

Sample time step between 1 and T

Generate random step from random trajectory

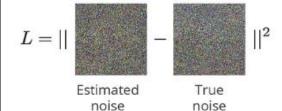
Make a forward pass of the model to eastimate noise

Generated noisy image

Parametrised model

Estimated noise in the noisy image

Take a gradient descent step to update model parameters



Update model parameters taking gradient descent step

To sample/generate

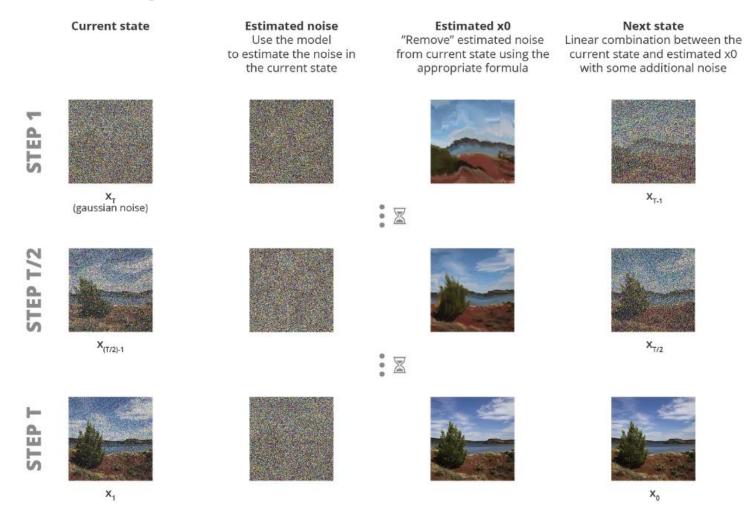


Illustration of the sampling process of a denoising diffusion probabilistic model.

To sample/generate

Algorithm 2 Sampling

```
1: x_T \sim \mathcal{N}(0, I) \triangleright Initial isotropic gaussian noise sampling

2: for t = T, ..., 1 do

3: z \sim \mathcal{N}(0, I) if t > 1 else z = 0 \triangleright Sample random noise (if not last step)

4: \tilde{\epsilon} = \epsilon_{\theta}(x_t, t) \triangleright Estimated noise in current noisy data

5: \tilde{x_0} = \frac{1}{\sqrt{\bar{\alpha}_t}}(x_t - \sqrt{1 - \bar{\alpha}_t}\tilde{\epsilon}) \triangleright Estimated x_0 from estimated noise

6: \tilde{\mu} = \mu_t(x_t, \tilde{x_0}) \left( = \frac{1}{\sqrt{\alpha_t}} \left( x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right) \right) \triangleright Mean for previous step sampling

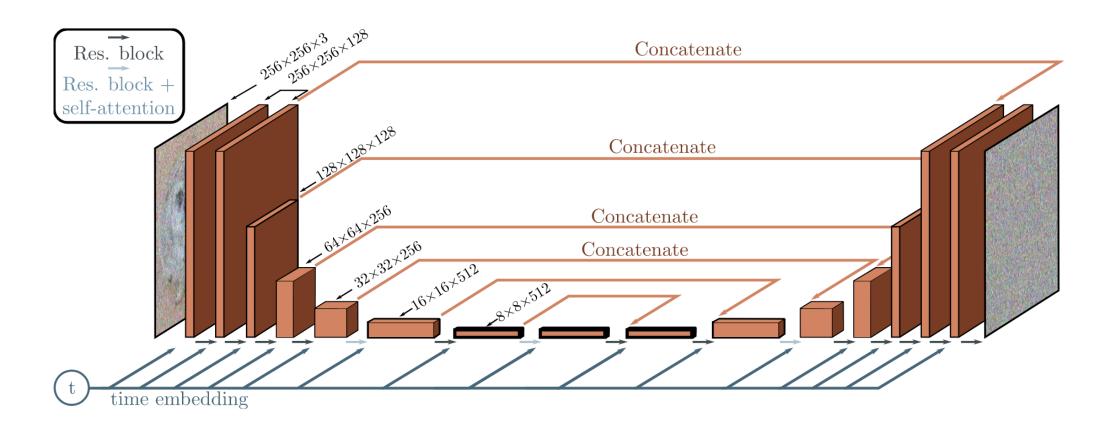
7: x_{t-1} = \tilde{\mu} + \sigma_t z \triangleright Previous step sampling

8: end for

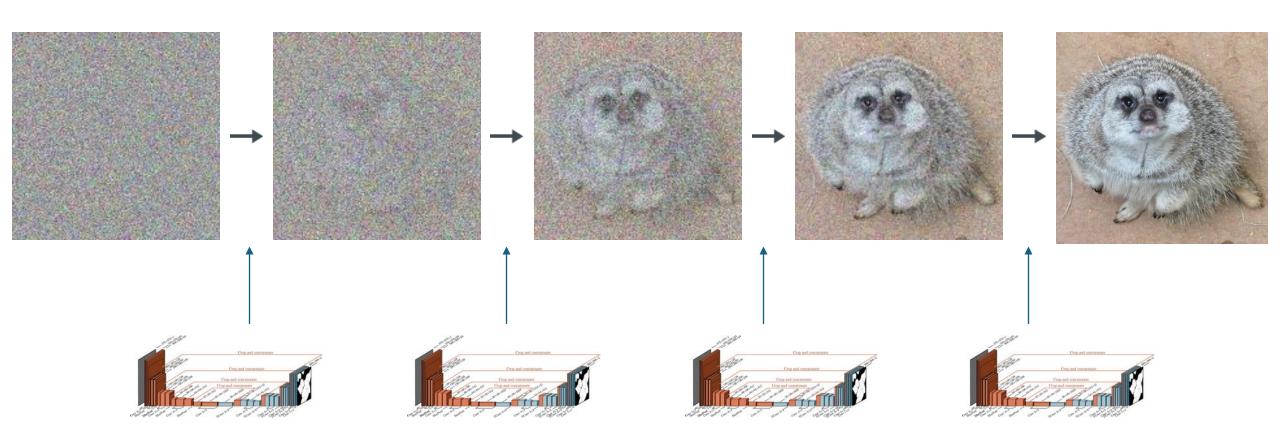
9: return x_0
```

U-Net (2016) as the Model

Output is same size as the input.



U-Net for reverse diffusion



Any Questions?

Moving on

- Diffusion model math
- Training process
- Motivation for latent diffusion
- Latent diffusion
- Conditional generation

Hi-Res Conditional Generation via Multi-Resolution Generation

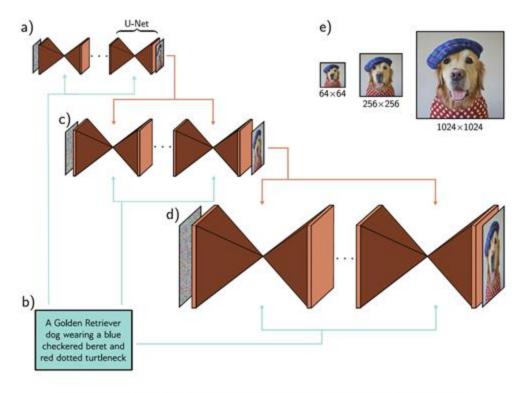


Figure 18.11 Cascaded conditional generation based on a text prompt. a) A diffusion model consisting of a series of U-Nets is used to generate a 64×64 image. b) This generation is conditioned on a sentence embedding computed by a language model. c) A higher resolution 256×256 image is generated and conditioned on the smaller image and the text encoding. d) This is repeated to create a 1024×1024 image. e) Final image sequence. Adapted from Saharia et al. (2022b).

Diffusion Models

Eventually got quality comparable to GANs...

- Better than VAEs and normalizing flows, but very very slow...
- Every step of the reverse process is working with full size images.
 - Full size input
 - Full size output
- Multi-resolution architectures are often a sign cost is an issue.
 - But also useful for global consistency, so do not disregard.

Do we have good models?

	GANs	VAEs	Flows	Diffusion
Efficient sampling	√	✓	✓	Х
High quality	√	X	Х	✓
Coverage	Х	?	?	?
Well-behaved latent space	√	√	✓	Х
Interpretable latent space	?	?	?	Х
Efficient likelihood	n/a	X	✓	Х

Diffusion on pixels is slow.

Diffusion on latents will be faster.

Any Questions?

Moving on

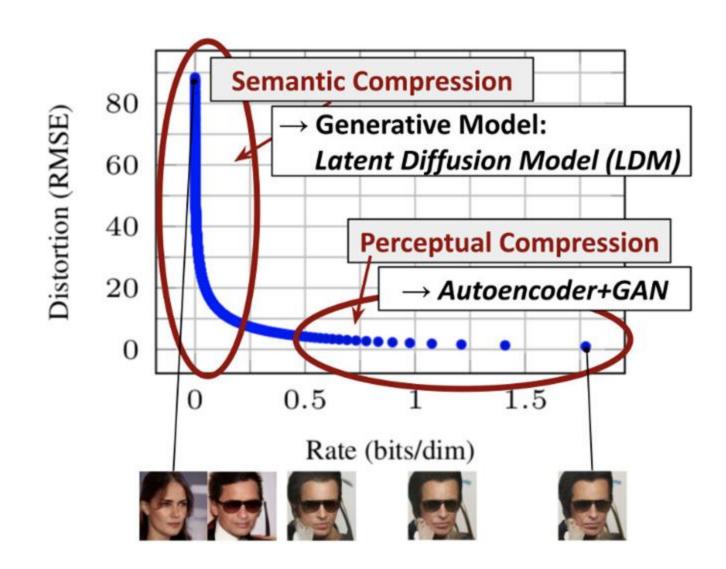
- Diffusion model math
- Training process (again)
- Motivation for latent diffusion
- Latent diffusion
- Conditional generation

Different Models for Different Tradeoffs

Focus on lower dimension latent model that gets the semantic details right...

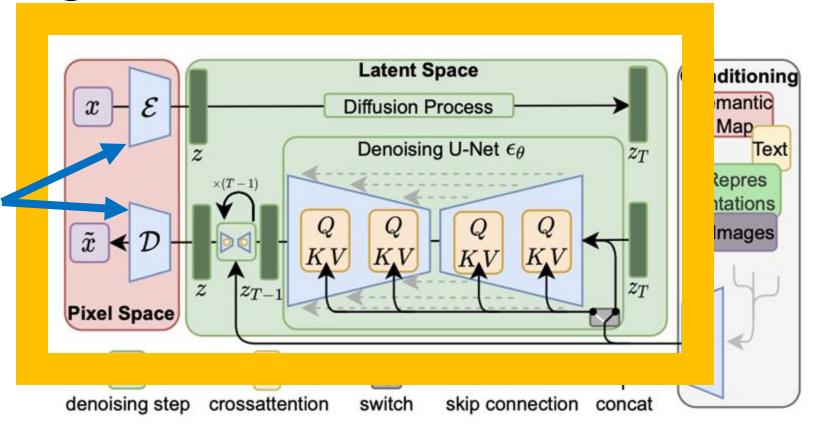
- Diffusion in latent space
- Use another high quality model for image generation.

"High-Resolution Image Synthesis with Latent Diffusion Models" By Rombach, Blattman, Lorenz, Esser and Ommer (2021)



Combining Auto-Encoder Latents with Diffusion

Pick your favorite autoencoder with a small latent space.



Latent Diffusion

Key idea:

- Pixel space is big.
- Run diffusion process in smaller latent space.

"High-Resolution Image Synthesis with Latent Diffusion Models" By Rombach, Blattman, Lorenz, Esser and Ommer (2021)

Latent Diffusion Components

Latent diffusion models have two main components.

- Function mapping latent codes to high quality images.
 - This function does not need to have all the qualities we want from generative models.
 - In particular, much of the latent space may not make sense.
- Function mapping noise to latent codes of high quality images.
 - This is the latent diffusion part.
 - Just this part gets retrained for different applications.

A Random Latent from Stable Diffusion

latent = torch.randn(1, 32, 32, 4)
latent_image = decode_latent(latent)

Image shape is 1x256x256x3.

This is that high quality image model?

https://stability.ai/

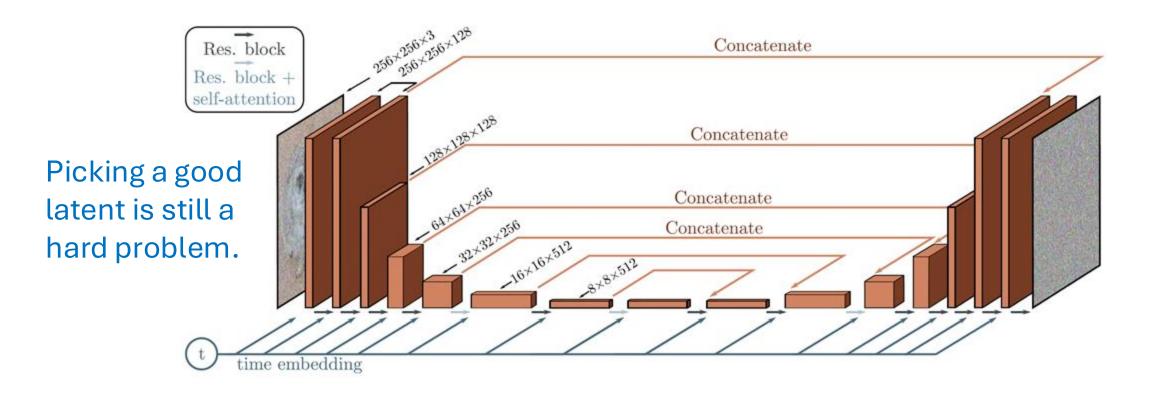


Figure 18.9 U-Net as used in diffusion models for images. The network aims to predict the noise that was added to the image. It consists of an encoder which reduces the scale and increases the number of channels and a decoder which increases the scale and reduces the number of channels. The encoder representations are concatenated to their partner in the decoder. Connections between adjacent representations consist of residual blocks, and periodic global self-attention in which every spatial position interacts with every other spatial position. A single network is used for all time steps, by passing a sinusoidal time embedding (figure 12.5) through a shallow neural network and adding the result to the channels at every spatial position at every stage of the U-Net.

Any Questions?

Moving on

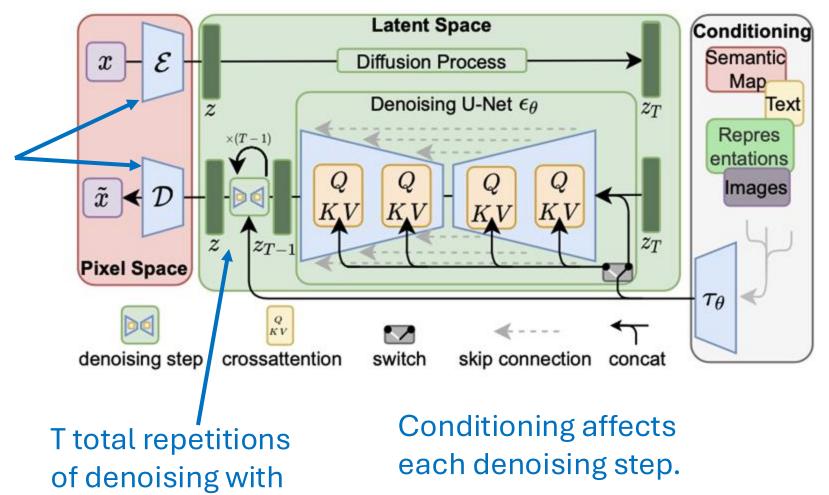
- Diffusion model math
- Training process
- Motivation for latent diffusion
- Latent diffusion
- Conditional generation

Conditioning in Latent Space

conditioning.

Conditioning takes over all of latent sampling.

Pick your favorite autoencoder with a small latent space.



Rombach et al, "High-Resolution Image Synthesis with Latent Diffusion Models," 2022

Conditional generation using classifier guidance

Figure 18.12 Conditional generation using classifier guidance. Image samples conditioned on different ImageNet classes. The same model produces high quality samples of highly varied image classes. Adapted from Dhariwal & Nichol (2021).

Conditional generation using text prompts

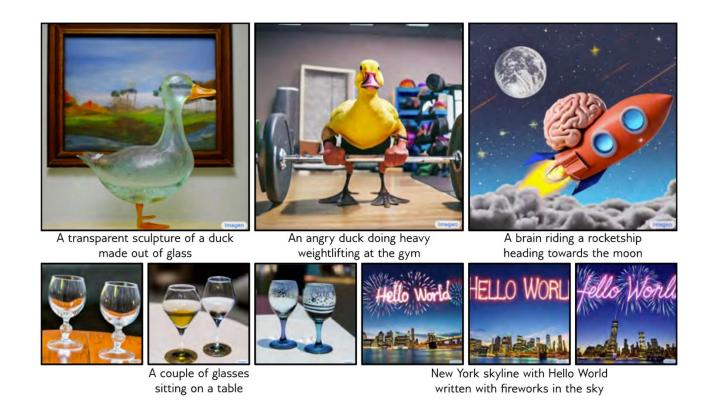


Figure 18.13 Conditional generation using text prompts. Synthesized images from a cascaded generation framework, conditioned on a text prompt encoded by a large language model. The stochastic model can produce many different images compatible with the prompt. The model can count objects and incorporate text into images. Adapted from Saharia et al. (2022b).

Super Resolution

- Downsample training images 4x
- Upsample with bicubic interpolation.
- Train latent diffusion model to recover the finergrained details.

"High-Resolution Image Synthesis with Latent Diffusion Models" By Rombach, Blattman, Lorenz, Esser and Ommer (2021)

Figure 9. ImageNet 64→256 super-resolution on ImageNet-Val. LDM-SR has advantages at rendering realistic textures but SR3 can synthesize more coherent fine structures. See appendix for additional samples and cropouts. SR3 results from [70].

In Painting

Mask some of the image and reconstruct rest of the image to be consistent.

- Don't change the unmasked part!
- Keeping unmasked part mostly easy because latent code has spatial structure.

"High-Resolution Image Synthesis with Latent Diffusion Models" By Rombach, Blattman, Lorenz, Esser and Ommer (2021)

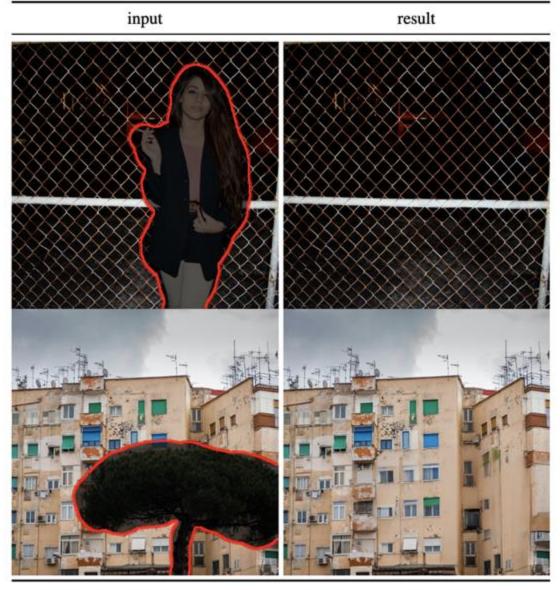


Figure 10. Qualitative results on object removal with our big, w/ ft inpainting model. For more results, see Fig. 21.

Example Notebooks from the Book

Notebook 18.1 – Diffusion Encoder in 1D

Notebook 18.2 – Training Decoder

Notebook 18.3 – 1D Reparameterized Model (more robust)

Notebook 18.4 – Families of Diffusion Models (DDIM)

